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Abstract We review the use of Voronoi tessellations for grid genergtespecially
on the whole sphere or in regions on the sphere. Voronoiltageas and the cor-
responding Delaunay tessellations in regions and surfacdsuclidean space are
defined and properties they possess that make them wedddoit grid generation
purposes are discussed, as are algorithms for their catistiuThis is followed
by a more detailed look at one very special type of Voronae#ation, the cen-
troidal Voronoi tessellation (CVT). After defining them sdussing some of their
properties, and presenting algorithms for their consioactve illustrate the use of
CVTs for producing both quasi-uniform and variable resolumeshes in the plane
and on the sphere. Finally, we briefly discuss the computatisolution of model
equations based on CVTs on the sphere.

1 Introduction

Given two setsA andB and a distance metrid(a, b) defined fora € A andb € B,

a Voronoi diagram or tessellation is a subdivisionfohto subsets, each of which
contains the objects iA that are closer, with respect to the distance metric, to one
object inB than to any other object iB. Although Voronoi tessellations can be
defined for a wide variety of sets and metrics, of interesehigthe situation for
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which the sefA is a region or surface in Euclidean spaBes a finite set of points
also in Euclidean space, and the metric is the Euclideaaruist

Voronoi tessellation have a long history, probably becatosenoi-like arrange-
ments often appear in nature. Voronoi-like tessellatiopgeared in 1644 in the
work of Decartes on the distribution of matter in the cosneigion near our sun.
The first systematic treatment of what we now call Voronasédiations was given
by Dirichlet (Dirichlet, 1850) in his study of two- and threiémensional quadratic
forms, i.e., homogeneous, multivariate polynomials ofrdegwo; hence, Voronoi
regions are often referred to as Dirichlet cells. Voronair@nhoi, 1907) generalized
the work of Dirichlet to arbitrary dimensions, again usingavare now referred to
as Voronoi tessellations or diagrams.

The first documented application of Voronoi tessellationgeared in the classic
treatise of Snow (Snow, 1855) on the 1854 cholera epidentiomaon in which he
demonstrated that proximity to a particular well was stigraprrelated to deaths
due to the disease. Voronoi tessellations have continuédx teery useful in the
social sciences, e.g., in the study of dialect variatiomsnalgraphics, territorial
systems, economics, and markets. Starting in the late ¥ttury and continu-
ing to this day, Voronoi tessellations have also been usedyistallography, espe-
cially in the study of space-filling polyhedra, althoughthiis setting, various other
names have been used to denote Voronoi regions, e.g., lsteh@o fundamental
area, sphere of influence, domain of action, and plesiohedra

Itis not surprising, due to their ubiquity and usefulnekat throughout the 20th
century, Voronoi tessellations were rediscovered manggsinAs a result, Voronoi
regions have been called by many different naniésessen polygon®fer to the
work of Theissen on developing more accurate estimateshtoaverage rainfall
in a region.Area of influence polygonsas a term coined in connection with the
processing of data about ore distributions obtained frorethalesWigner-Seitz re-
gions domain of an atomandMeijering cellswere terms that arose from work on
crystal lattices and the Voronoi cell of the reciprocal tayattice is referred to as
theBrillouin zone(Kittel, 2004; Ziman, 1979). In the study of codes by, e.ga%
non, Voronoi cells are callechaximum likelihood region@/Veaver and Shannon,
1963). The field of ecology gave rise to two more alternatel&larea potentially
availableandplant polygondor a Voronoi region associated with a particular tree
or plant.Capillary domaingefers to Voronoi regions in a tissue based on the centers
of capillaries.

For a long time, the routine use of Voronoi tessellationspplizations was hin-
dered by the lack of efficient means for their constructiomisTsituation has now
been remedied, at least in two and three dimensions. Votessgllations also be-
came closely intertwined with computational geometry. &mmple, Shamos and
Hoey (Shamos and Hoey, 1975) not only provided an algoritbrrcénstructing
Voronoi tessellations, but also showed how they could bel tseanswer several
fundamental questions in computational geometry.
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Delaunay tessellationsthe dual concept to Voronoi tessellations, also have a
long history and have been called by other names. They atigihwith Voronoi
(Voronoi, 1908) who called thetihe ensemble (L) of simpliceBelone (Delaunay,
1928, 1934) was the first to define the tessellations beaisgdmé in terms of
empty spheres; he referred to them in terminology similah#d of Voronoi and,
even today, some refer to Delaunay tessellations-partitions. The name Delau-
nay was first associated with Delaunay triangulations byeRegRogers, 1964).
Delaunay tessellations have also proven to be very usafubaally for grid gener-
ation.

The first applications of Voronoi tessellations to globahaspheric modeling
were made by Williamson (Williamson, 1968) and Sadourny.gSadourny et al,
1968) wherein the barotropic vorticity equation was inégd forward in time. Nei-
ther Williamson nor Sadourny referred to their meshes asnairtessellations;
Williamson referred to the underlying tessellation as adtigsic grid,” a colloquial-
ism that is used in much of the literature discussing the fismmnoi tessellations
in global climate modeling.Both of these efforts produced promising results as
compared to other models available at the time. The reasdhdo success was re-
ally due to not having a longitudinal polar filter which digexd the earlier solutions
on latitude-longitude grids, or to not using a reduced gridol also distorted the
solutions. In addition, it helped as well that the discreterfation of the Jacobian
put forth by Arakawa (Arakawa, 1966) could be readily tratestl to their respec-
tive “geodesic grids.” Williamson (Williamson, 1970) camied this line of research
with the integration of the shallow-water system in pringtivariable form. While
Williamson’s tessellation was extremely uniform, in a gibbense, as compared to
the latitude-longitude meshes being using in other modadidpment efforts (Kasa-
hara and Washington, 1967), the truncation error analys/ibiamson clearly re-

1 Delaunay tessellations are often referred to as Delauiaygulations because, in two dimen-
sions, they consist of a triangulation of the points thaegate the Voronoi tessellation. We choose
to refer to them as Delaunay tessellations to emphasizeatttetiat the concept of a dual to

Voronoi tessellations is quite general and not limited to timensions. When dealing with two-

dimensional settings, we will however, call them Delaun@ngulations.

2 Delone was a Russian number theorist who used the spelliteubey when writing papers
in French or German. He was also the first to coin both the gtecs “Dirichlet domains” and
“Voronoi regions.”

3 Adjectives such as “geodesic,” “bisection,” and “icosaiaétare often used to describe grids on
the sphere. However, there seems to be a lack of consisteocy what these qualifiers mean. In
this paper, we use the following terminology.

Geodesic gridsefer to any grid on the sphere such that the edges of the gitslare geodesic
arcs, i.e., arcs of great circles. According to this defimfiall Voronoi grids on the sphere are, by
construction, geodesic grids.

Bisection gridgefer to any grid constructed through repeated bisecti@pdétonic solid hav-
ing vertices on the sphere and edges projected onto thees@Bisection grids are by construction
geodesic grids. One may also define a bisection grid by regdasection of the Delaunay trian-
gulation corresponding to the platonic solid.

Octahedral-bisection grideefer to bisection grids that are based on the platonic edi@hav-
ing 12 pentagonal faces. Note that this grid is often refetoeas a “geodesic grid” or a “bisection
grid” but here we make a finder distinction between theseiterogies.
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flected the fact that the Voronoi tessellation was less umifim a local sense; the
discrete operators used in (Williamson, 1970) resultedst-&rder truncation errors
that could quickly corrupt the solution. Williamson’s b&mapic primitive equation
model was discretized using a collocated grid where thiskraad velocity reside
at the same locatiohSince a collocated grid makes little (if any) use of the dual
mesh, it is not clear if this geodesic grid was or was not a Nortessellation.

Following Williamson (Williamson, 1970), the idea of sahg the barotropic
primitive equations based on a Voronoi tessellation wasreisly abandoned for
fifteen years. It appears that this idea did not gain tradiworiwo reasons. First,
global spectral models emerged as a superior choice tofihiéé-volume or finite-
difference counterparts because they are based on theahptlar filter so to
speak and have no pole problem. Their spectral accuracyhanetintroduction of
the fast Fourier transform (Cooley and Tukey, 1965) alsdrdmuted significantly.
Second, while numerical schemes situated on latitudetiog meshes were bur-
dened with truncation errors comparable to those found Byanvison (Williamson,
1970), progress toward methods to mitigate the impact afettegrors on the long-
term stability of simulations was much more rapid for quiatieiral meshes; see,
e.g., (Arakawa and Lamb, 1977). Unfortunately, the nuna¢ricethods developed
for the solution of the barotropic primitive equations oradtilateral meshes did
not readily translate to Voronoi tessellations. For examplhile C-grid staggered
quadrilateral meshes were essentially operational by tidel870s, a comparable
C-grid scheme for general Voronoi tessellations was naveemuntil Thuburn et.
al. (Thuburn et al, 2009) in 2009.

Because it appeared, at least at the time, that Voronoilkatsses were not well
suited for the integration of the primitive equations, whkis idea was revisited
by Masuda and Ohnishi (Masuda and Ohnishi, 1986) they chabfeaent sys-
tem of equations to discretize. Masuda and Ohnishi forredl#tte shallow-water
system in vorticity and divergence variables, instead ohjive variables. In this
approach, the thickness, vorticity, and divergence arocated at the center of
each Voronoi cell. Other similar work on solving shallow ®aequations based
on Voronoi mesh was done by Augenbaum, et. al. (Augenbau@4; ugenbaum
et al, 1985). Randall (Randall, 1994) would later show thatdollocation of vari-
ables in the vorticity-divergence system, termed the d;ddads to a simulation
of geostrophic adjustment that is better than any of therattaggerings based on
primitive variables. The superior simulation of geostoogijustment along with the
direct control over the evolution of vorticity led to robstnulations of the shallow-
water system. Heikes and Randall (Heikes and Randall, 18p&antinued this line
of research with the implementation of a geometric multigolver to mitigate the
cost associated with solving the vorticity-divergencdeys In turn, this work led
to the creation, by Ringler et. al. (Ringler et al, 2000) ird@0of the first global
atmosphere dynamical core situated on a Voronoi tesswilati

The demonstration that Voronoi tessellations could be tsedccessfully model
global atmosphere dynamics created considerable int&gstnd large, all global

4 The collocated grid was later named the “A-Grid” in (Arakasved Lamb, 1977).
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atmosphere models using finite-volume methods were baséatitute-longitude
grids. With no satisfactory solutions to overcome the gingslarities present at the
poles of latitude-longitude grids, the quasi-uniform giftered by Voronoi tessella-
tions was a compelling alternative. This stimulated resetoward finding numeri-
cal schemes based on primitive variables that would esdlgrttianslate the A-, B-
and C-grid staggerings from quadrilateral meshes to Vdrassellations. The col-
located, A-grid staggering, first proposed by Williamsonilfdmson, 1970), was
successfully implemented by Tomita et. al. (Tomita et aQ0That effort resulted
in the first ever global cloud resolving simulation by Tomdtaal. (Tomita et al,
2005). It is important to note that (Tomita et al, 2001) andn(ita et al, 2005) do
not employ a Voronoi tessellation since the location of tek wertices are placed
at the barycentérof the Delaunay triangulation, instead of the circumceaféhe
Delaunay triangulation. As a result, the powerful resuit follows from a Voronoi
tessellation are notimmediately applicable to their m&sle. B-grid staggering was
successfully developed for Voronoi tessellations by Ringind Randall (Ringler
and Randall, 2002). Itis only at this point, fully two decaddter the energy and po-
tential enstrophy conserving schemes for quadrilaterdsgvere derived (Arakawa
and Lamb, 1981), that the numerical methods on Voronoi lesieas are compa-
rable to their quadrilateral counterparts.

With the successful implementation of both the discretéicity-divergence sys-
tem and various discrete forms of the primitive equatiorieayison quasi-uniform
Voronoi tessellations, attention is now turning toward tise of variable resolu-
tion Voronoi tessellations. During this process we arer@gséy revisiting the trun-
cation error problems that Williamson (Williamson, 1976gmtified four decades
ago when using quasi-uniform Voronoi tessellations. Whadriqg low-order, finite-
volume methods with variable resolution Voronoi tessklla, truncation error will
be increased, at least locally, in the regions of mesh tiiansiTo overcome the
challenge presented by this truncation error behavior,eeetisree routes forward.
First, increase the accuracy of the underlying finite-vaumethod to reduce trun-
cation error to acceptable levels; this approach was ssftdgsemployed in (Du
et al, 2003b; Du and Ju, 2005; Weller, 2009; Weller and Wel608). Second, de-
velop numerical schemes that respect both geostrophistatgmt and the need for
nonlinear stability, even when the mesh is highly distarthis approach has been
developed by Thuburn et. al. (Thuburn et al, 2009) and Rirgfleal. (Ringler et al,
2010). And finally, we can attempt to optimize the qualitylod tariable resolution
meshes in order to limit the extent of the problem. In the endje combination of
these three approaches will likely lead to the creation @fréable-resolution global
climate system model.

This chapter is focused on the mesh generation aspect ohvbtessellations
and, more importantly, the inherent properties that thessh@s are guaranteed to
possess. We first provide a mathematical description of Adirtessellations and
their Delaunay triangulation counterparts. This is folmiby a detailed analysis of

5 The barycenter is the center of mass; thus, for a triangéebénycenter is at the intersection of
the three lines joining the vertices and the centers of tip@sipe sides whereas the circumcenter
is at the intersection of the perpendicular bisectors offihee sides.
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one very special type of Voronoi tessellation, teatroidal Voronoi tessellatioiWVe
then explore the properties of centroidal Voronoi testielis when producing both
quasi-uniform and variable resolution meshes. Finallybviefly discuss the numer-
ical implementation of models using centroidal Voronostkations. We defer until
Section 3 a discussion about why centroidal Voronoi testetis are especially well
suited as a basis for grid generation.

2 Voronoi and Delaunay tessellations

2.1 Definitions and properties

We are given an open bounded dom@ire RY and a set of distinct points }! ; C
Q. For each poink;, i = 1,...,n, the correspondinyoronoi regionV,i = 1,...,n,
is defined by

Vi={xeQ | [x=x| <|x=xj| for j=1,--.n and j#i}, (1)

where|| - || denotes the Euclidean distance (Efenetric) inRY. ClearlyV NV = 0
fori # j, and U Vi = Q so that{Vi }I'_, is atessellatiorof Q. We refer to{ i}
as theVoronoi tessellatioror Voronoi diagramof Q (Okabe et al, 2000) associated
with the point sefx;}' ;. A pointx; is called agenerator a subdomaiV; C Q is
referred to as th&¥oronoi regionor Voronoi cellcorresponding to the generatgr

It is clear that, except for “sides” that are part of the boanydof Q, Voronoi
regions{V;}!'_; are polygons in two dimensions and polyhedra in three dilness
Figure 1 (upper left) presents a Voronoi tessellation ofuhi square in two di-
mensions corresponding to ten randomly selected gensrdtds guaranteed that
the line segment connecting two neighbor generators iogahal to the shared
edge/face and is bisected by that edge/face.

The dual of a Voronoi tessellation in the graph-theoretszaise (i.e., by con-
necting all pair of neighbor generators) is calleBelaunay tessellatioor, in two
dimensions, ®elaunay triangulatio{Okabe et al, 2000) associated with the point
set{x;}{' ;. Elements of a Delaunay tessellation consist of triangies/o dimen-
sions and tetrahedra in three dimensions. The Delaunagtriation corresponding
to the above ten generators is shown in Figure 1 (top rigtd)elthat each triangle
of the Delaunay triangulation is associated with a singléexeof its dual Voronoi
tessellation. That Voronoi vertex is located at the centeéhe circumscribed cir-
cle of the triangle; see an illustration in Figure 1 (bottoiEach cell edge of the
Voronoi tessellations is uniquely associated with oneedgje of the dual Delaunay
triangulation; each pair of edges are orthogonal, but doeogssarily intersect. If
the pair of edges do intersect (or if the lines segments aendrd to a point where

6 For the open regio®, Q denotes its closure, i.eQ together with its boundary points.
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Fig. 1 The Voronoi tessellation of the unit square correspondingOtrandomly selected genera-
tors. Top-left: the bisection property; top-right: theemponding Delaunay triangulation; bottom:
the circumcicle property.

they intersect), then the intersection point will bisect tine segment connecting
generators.

In two dimensions, the Delaunay triangulation maximizesrfinimum angle,
i.e., compared to any other triangulation of the points, gshmllest angle in the
Delaunay triangulation is at least as large as the smaliegean any other. This
property does not hold in higher dimensions. Note also tired fjiven set of gener-
ators, the Voronoi tessellation is always unique; howeherDelaunay tessellation
may not be unique in certain special situations, e.g., wien §enerators in two
dimensions form a rectangle that does not contain any o#reergtor.

Voronoi and Delaunay tessellations of a genarafaceor manifoldalso have
been widely studied in the field of computer graphics; seg, €Boissonnat and
Oudot, 2005). In particular, spherical Voronoi tesseatlatand Delaunay triangula-
tion and related algorithms are developed in (Renka, 1997).

2.2 Construction algorithms

For a given set of distinct poin{s; }[' ; C Q, the construction of the corresponding
Voronoi tessellation and Delaunay triangulation in Euelid space has been well
studied in past decades; see (Okabe et al, 2000). Note that slgorithms directly
compute the Delaunay tessellation whereas others contptétonoi tessellation.
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As illustrated in Figure 1, a property of the Delaunay trialagion is that the
circle circumscribing any Delaunay triangle does not ciongay other generators
in its interior. This is an important property because ibat the use of dipping
technique. If atriangle is non-Delaunay, we can flip onesoédges; see Figure 2 for
an illustration. This leads to the simgdlg algorithm construct any triangulation of
the points, and then flip edges until no triangle is non-DedguUnfortunately, this
can takeO(n?) edge flips. It is worth noting that this edge-flipping techrégloes
not directly extend to three or higher dimensions; on thedtiand, the circumcircle
property itself does generalize, e.g., to circumspherdéseoDelaunay tetrahedra in
three dimensions, and some topological operations anasogdlipping have been
proposed and discussed in three dimensions (Freitag aivie®IGooch, 1997; Du
and Wang, 2003; Alliez et al, 2005).

Fig. 2 The flipping operation. Left: the triangulation does not tée Delaunay condition, i.e.,
the circumcircles contain more than three points; righppflig the common edge produces a
Delaunay triangulation for the four points.

A usually more efficient way to construct the Delaunay triglagjon is to re-
peatedly add one vertex at a time and then re-triangulataffeeted parts of the
graph. When a point; is added, the triangle containingis split into three trian-
gles and then the flip algorithm is applied. This proceduralied theincremental
algorithm It takesO(n) time to search through all the triangles to find the one that
contains;, after which we potentially flip in every triangle. The oviérantime is
theoreticallyO(n?) (Guiba et al, 1992), but often in practice this algorithm bat
ter than expected performance (Bentley et al, 1980). Whéddchnique extends to
higher dimension, the complexity could grow exponentiallyhe dimension, even
if the final Delaunay triangulation is small (Edelsbrunned &hah, 1996).

An efficientdivide and conquer algorithifLee and Schachter, 1980; Guibas and
Stolfi, 1985) for constructing a Voronoi tessellation of aegi set of generators in
the plane is defined as follows. One recursively draws a breptit the generators
into two sets having roughly the same number of points. Vordessellations of
the two subsets are separately constructed. Then, a pmedéwear dividing line
between the two subsets is determined. Each segment oifthis litself a segment
of the perpendicular bisector corresponding to two genesdelonging to different
subsets. Then, all edges or part of edges from the Vororsgflatons of each sub-
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set that lie on the opposite side of the dividing line are @eleFinally, the Voronoi
tessellation of the original set of generators is given lgyuthion of the remaining
edge segments of the Voronoi tessellations of the two ssibset the piecewise lin-
ear dividing line. See Figure 3 for illustrative sketchestod divide and conquer
algorithm. Carefully implemented, this divide and congqoethod for construct-
ing a Voronoi tessellation of a given set of generators hagpbexity O(nlogn). A
divide and conquer paradigm for constructing a triangaiain d-dimensions was
developed in (Cignoni et al, 1998).

Fig. 3 Letft: the divide-and-conquer algorithm after the giveneyaors are divided into two sub-
sets (the open and filled circles), the two Voronoi tesseliatof the subsets have been constructed
(the dashed lines and thin solid lines), and the piecewrgsalidividing line has been determined
(the thick, red lines). Right: the Voronoi tessellation bfthe generators found by deleting appro-
priate portions of the Voronoi tessellations of the two gibs

Another efficient algorithmEortune’s sweep line algorithrfFortune, 1986), is
based on the sweep line technique (Sedgewick, 1983) anbv@s/moot only a sweep
line, but also a beach line that actually consists of paralasts. Without loss of
generality, one can assume that the sweep line is vertidathet it moves from left
to right. Generators to the right of the sweep line have ydte¢@onsidered. The
beach line is to the left of the sweep line. It is defined aofed: first, for each gen-
erator to the left of the sweep line whose Voronoi region hetsty be completely
determined, one defines the parabola that separates ths gwhare closer to the
sweep line from those that are closer the generator; therbehach line is deter-
mined as the right-most points in the union of the parabdléesarly, a vertex of
the beach line is equidistant from the two generators cpogding to the parabolas
meeting at that vertex. Thus, as the sweep line moves frartoleight, the vertices
of the beach line move along the edges of the Voronoi teswellaA parabolic arc
is added to the beach line whenever the sweep line passes gem@nator; an arc
is removed from the beach line whenever the Voronoi cell igr ¢corresponding
generator has been completely determined. The lattetisituaccurs whenever the
sweep line is tangent to a circle passing through three gérsrwhose parabolas
form consecutive arcs of the beach line. See Figure 4 forlastriative sketch for
Fortune’s algorithm. Carefully implemented, Fortunefgaalthm for constructing a
Voronoi tessellation of a given set of generators has coxtpl©(nlogn).
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Fig. 4 Set-up in Fortune’s algorithm. The red, dashed straigktibrthe sweep line that is moving
from left to right; the blue, piecewise parabolic curve is tieach line. The filled circles are the
generators already visited by the sweep line whereas the ojpees are generators yet to be
visited. The thin black lines are edges or edge segmentsrohdoregions already constructed.

Finally, we mention‘convex hull” algorithms (Chynoweth and Sewell, 1990)
for, e.g., Delaunay tessellation construction in Euclidesgions. For example, in
the two-dimensional case, one can vertically project theegggtors from their plane
onto a paraboloidal surface whose axis is perpendiculandb glane. The lower
boundary of the convex hull of the points on the paraboloigiserally a triangu-
lated shell whose vertical projection back onto the orijph@ne gives the Delaunay
triangulation. This geometrical characterization alsplaixs the circumcircle prop-
erty mentioned above. The plane of any triangular facet@agsumed convex shell
intersects the paraboloid on a closed curve whose projeigithat projected trian-
gle’s circumcircle. Thus, other generators lying stridgtiside that circle would have
to correspond to points of the paraboloid that necesséibytside the putative con-
vex hull, in violation of the original assumption that a cemhull was constructed.
See (Chynoweth and Sewell, 1990; Sewell, 2002) for detallscussions on this
characterization.

3 Centroidal Voronoi tessellations

Centroidal Voronoi tessellation@CVTs) are special Voronoi tessellations having
the property that thgeneratorsof the Voronoi tessellation are also thenters of
mass(or centroidsor barycentery with respect to a given density function, of the
corresponding Voronoi regions. CVT methodologies prodhigk-quality point dis-
tributions in regions and surfacesi{ or within sets of discrete data. In the latter
context and in its simplest form, CVT reduces to the wellxknd-means cluster-
ing algorithm (Gersho and Gray, 1992; Hartigan, 1975; Kajouet al, 2002). The
dual tessellation corresponding to a centroidal Voronssédation is referred to as
acentroidal Voronoi Delaunay tessellatig@VDT).
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CVTs and CVDTSs possess certain properties, which we didmelssy, that make
them very well suited for grid generation which is a focusta$ {paper. In addition,
in (Nguyen et al, 2009), several quality measures were usetfdct a quantitative
comparison of uniform triangular mesh generators in comveknon-convex planar
regions; it was found that CVDTs result in higher quality mescompared to those
constructed using most other algorithms, with only the métbiven in (Persson
and Strang, 2004) that uses spring dynamics being somewimgetitive.

Although uniform CVT-based grids have been shown to be cdithymewith
(or even better than) other uniform mesh generators in plam@ee-dimensional,
and spherical regions, perhaps they have even greatgy tdilithe construction of
nonuniform meshes. For one thing, through a point densitgtfan, CVT grid gen-
eration methodologies allow for a simple means of contiglthe local grid size;
moreover, the density function can easily be connectedtw estimators, resulting
in effective adaptive refinement strategies (Ju et al, 2D@y another thing, CVT-
based grids feature smooth transitions from coarse to fiitks;ggee Section 4.1.2
for an illustration. Smooth grid transitions can greatlduee deleterious effects,
e.g., non-physical wave reflections, that can occur if ggdschange abruptly.

3.1 Definitions and properties

Given a density functiop(x) > 0 defined o2, for any regiorV C Q, the standard
mass centefor centroid x* of V is given by

/ . xp(x) dx
= (2)

/Vp(x) dx .

Note that it is often required that is integrable with respect t@ and the volume
of the set{x|p(x) = 0} is zero in order to make sure (2) is well defined in practice.
A special family of Voronoi tessellations are defined asoiol.

Definition 1 (Du et al, 1999)Given a density functiop(x) defined onQ, we re-

fer to a Voronoi tessellatio(x;,Vi)}{; of Q as acentroidal Voronoi tessellation
(CVT) if and only if the pointgx;}!_; which serve as the generators of the associ-
ated Voronoi regiongV; }{! ; are also the centroids, with respect fgx), of those
regions, i.e., if and only if we have thgt= x; for i = 1,...,n. The corresponding
dual triangulation is called a&entroidal Voronoi Delaunay tessellation (CVDT)

A generic Voronoi tessellation does not in general satiséy@VT property; see
Figure 5 for an illustration as well as for an illustration@¥T. On the other hand,
given a density functiop and the numben of generators, the CVT of a domain
always exists, although it may not be unique.

CVTs possess an optimization property that can be used asisifbavarious
extensions. Given any set of poin¥s= {X;}!' ; in Q and any tessellatioh =
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Fig. 5 (Du et al, 1999)Left: a Voronoi tessellation of the unit square with 10 ramdjp selected
generators (the filled circles); the open circles denoteénéroids of the Voronoi polygons with re-
spect to a uniform density; the centroids do not coincidé Wie generators. Right: a 10-generator
centroidal Voronoi tessellation of the square for a unifatemsity; the generators and centroids
coincide.

{Vi}, of Q, define aclustering energypy’
n
ji/ va - / —Xj 2d . 3
(XV)=3 J PXIx=%i[%ax (3)

Then, it can be shown tha¥” is minimized only if{(Xi,V)}I_, forms a CVP of
Q. Note that if {(x;,Vi)}]'; forms a CVT, it does not necessarily minimiz¢,
e.g., it may define a saddle point (Du et al, 1999) of (3). In yn@pplications, the
clustering energyunctional.#” is often naturally associated with quantities such as
quantization erroy variance andcost

Asymptotically, as the number of generators becomes langgtarger, Gersho’s
conjecture (Gersho, 1979) states that, locally, the opi@Wa (in the sense of mini-
mizing the clustering energy) under the Euclidean metrimoa regular tessellation
consisting of the replication of a single polytope whosepghdepends only on the
spatial dimensiod.The regular hexagon provides a confirmation of the conjectur
in two dimensions for the constant density case (Newman213®r the three-
dimensional case and a constant density function, it has pes/ed (Barnes and
Sloane, 1983; Du and Wang, 2005) that among all latticeeb&3&Ts1° the CVT
corresponding to the body-centered cubic lattice for whiighVoronoi regions are
the space-fillingruncated octahedras the optimal one. For more general, non-
lattice cases and for non-constant densities, the questimains open, although

7 Note that, a prioriV need not be a Voronoi tessellation agcheed not be iv;.

8 In fact, this can be used as analyticaldefinition of CVTs alternate to the geometric definition
given in Definition 1.

9 In other words, Gersho’s conjecture states that, at leastiooth density functions, if the number
of generators is large enough and one focuses on a small enough regionatG¥T appears to
be a uniform tessellation involving congruent polytopes.

10 A |attice-based CVT is one whose generators are locatedaitieel so that the Voronoi regions
form congruent polytopes.
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extensive numerical simulations given in (Du and Wang, 2@@&snonstrated that
the truncated octahedra remains the likely candidate.ifttégesting to note that,
in two dimensions, Gersho’s conjecture implies that thel eédaunay triangula-
tion asymptotically consists of a replications of a singdéygon, namely congruent
equilateral triangles. In three dimensions, the dual Dedguessellation cannot con-
sist of congruent equilateral tetrahedra because the tteot cover three space.

3.1.1 Centroidal Voronoi tessellations of surfaces

Extensions of the VT and CVT conceptgarfacegor manifoldd are possible; for
example, tessellations of surfaces under the Euclidearicaee considered in (Du
et al, 2003a). Suppose thétis a compact and continuous hypersurfac&f 1.
Then, for any subregiov C Q, we callx® aconstrained mass centefV if it is a
solution of the problem:

find x¢ such that /p(y)||y—x|\2dy is minimized ovex € V. 4
v

Existence of minimizers of the problem (4) can be easily destrated using the
continuity and compactness of the objective function; h@wesolutions may not
be unique. It is worth noting that @ is a flat surface, thex® coincides withx*, the
standard center of mass centeMofif we replacex;” in Definition 1 byxf, then the
resulting Voronoi tessellatiofi(x;, Vi) }i_; of the surface&? is called aconstrained
centroidal Voronoi tessellatiofCCVT) (Du et al, 2003a), and its dual tessellation is
called aconstrained centroidal Voronoi Delaunay triangulatig@CVDT). In par-
ticular, whenQ is the surface of a sphere, we cf(lk;, Vi) }{, aspherical centroidal
Voronoi tessellatiofSCVT). Figure 6 presents an illustration of non-centrbaatel
centroidal Voronoi tessellations of the sphere.

Fig. 6 (Du et al, 2003a).eft: A spherical Voronoi tessellation with 64 randomlyesetked genera-
tors. Right: a 64-generator spherical centroidal Voroasséllation for the uniform density.

The calculation of the constrained centroidfor any given subregiol of a
smooth surfac& can be effected using Newton’s method or a damped Newton’s
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method (Ju, 2007). However, a more direct and less costlyoaph may be used
instead. One can first compute the standard centroad the subregiol as defined

in (2). Note that, in general, the standard centsGidf V does not lie on the surface
Q; for example, for a region on the sphesg, is inside the sphere. Then, as is
shown in (Du et al, 2003a), the constrained centsSidf V € Q can be found by
projectingx* onto Q along the normal direction af. In particular, ifV is a subset

of the surface of a sphere of radiusve have that its constrained center of mass is
given byx® = rx*/||x*||.

3.2 Algorithms for constructing CVTs

CVTs can be constructed either using probabilistic metiyguified by MacQueen’s
random algorithm (MacQueen, 1967) (which simply alteradtetween sampling
and averaging points) or deterministic methods typified lmyd’'s method (Lloyd,
1982) (which simply alternates between constructing Vortessellations and mass
centroids). Due to its effectiveness and simplicity, muttargion has been focused
on Lloyd’s method.

Algorithm 1 (Lloyd’s Method) Given a domain?, a density functiorp defined
on Q, and a positive integer n (the number of generators).

1. Select an initial set of n pointsk; } ; on Q.

2. Construct the Voronoi region8V; }{ ; of Q associated wit{x; }{" ;.

3. Determine the centroids (or constrained centroids), wehpect to the given
density function, of the Voronoi regiofi¥ }! ,; these centroids form the new set
of points{x; }{ ;; if Q is a hypersurface, thex must be projected ont@Q.

4. If the new points meet some convergence criterion, refdrn Vi)}!' ; and
terminate; otherwise, go to Stép

It has been shown (Du et al, 1999) that the energyassociated with the
Voronoi tessellatiolecreases monotonicaliuring the Lloyd iteration untila CVT
is reached. Some convergence analyses of the Lloyd’s matieagiven in (Du et al,
2006; Emelianenko et al, 2008).

In Step 1 of Algorithm 1, the initial set of points can be sébelcat random. How-
ever, because Lloyd’s method only finds local minima of thestgring energy?”,
the generator positions of the final CVT produced is affettgthe initial distribu-
tion of generators! Therefore, in some situations, one may want to use less noisy
starting conditions; an example is given in Section 4.1.1.

For the second step, the methods described in Section 2 2ecapplied. There
also exist software packages that may be used for Voromseltation construction.
For example, on the sphere, there is the STRIPACK packag&gr@997).

11 This is true for other CVT construction methods becauseriably, they only find local minima
of the clustering energy.
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The computation of centroids of the Voronoi regions in thiedtlstep of Algo-
rithm 1 can be effected by first decomposing each Voronooredito a set of trian-
gles/tetrahedra and then using a high-order quadratuedautriangles/tetrahedra
to approximate integrals appearing in (2). Note that if #giaon of interest is a sur-
face, e.g., part of the sphere or the whole sphere, thentdysaso includes the
projection of the Euclidean centroid onto the surface; ssién 3.1.1.

For the fourth step, an example of a stopping criterion i®ifis measure, e.g.,
the root mean square, of the movement of the generators freniteration to the
next is smaller than a prescribed tolerance; alternatalycan stop if the change in
the (computable) clustering energy is smaller than a pitestttolerance.

A probabilistic version of a generalized Lloyd’s method wasposed in (Ju et al,
2002a) together with its parallel implementatitn.

Algorithm 2 (Probabilistic Generalized Lloyd’s Method) Given a domair2, a
density functiorp defined o2, and a positive integer n.

1. Choose a positive integer q (the number of sampling pointg&gmtion) and
constants{o:i,Bi}iZ:1 such thata, >0, B, >0, 0+ a0, =1, andBy + B2 = 1,
choose an initial set of n poinfs¢ }/! ;; set j=1fori=1,...,n.

2. Choose g sample poimf‘%yr}?:l in Q at random, e.g., by a Monte Carlo
method, with the density functigrix) acting as the probability density function.
3.Fori=1,...,n, gather together in the set;\&ll sampled pointy, closest to
xi among{x;}{ ;, i.e., all sampled points in the Voronoi regiongf if the set W
is empty, do nothing; otherwise, compute the averag# the set \\Vand set

. (@fi+ Bu)xXi+ (a2]i + B2)ui
ji+1

and  j—ji+1 (5)

the new set ofx; }, along with the unchangefk;} corresponding to empty \V
form the new set of points }!4; if Q is a hypersurface, thexy must be pro-
jected ontaQ.

4. If the new points meet some convergence criterion, termjraherwise, re-
turn to Step 2.

In Steps 1 and 2 of Algorithm 2 as well as in Step 1 of Algorithnpdints need
to be sampled according to a given density funcpoisuch sampling steps may be
accomplished by a rejection method (Du et al, 2003a; Ju 08i2a; Ross, 1998)
which we now describe. Given a general dom&inn the plane or on the sphere,
determine an enclosing rectan@ewhose sides are parallel to the coordinate axes
or, on the sphere, are latitude and longitude lines, andlwbantains all points
in Q. Setpmax = Maxco P(X). Then, there are two rejection tests applied. First,

12 This algorithm can also be viewed as a generalization of M&e®'s method (MacQueen,
1967); see (Ju et al, 2002a). In fact, if in (§)= 1, ax = B1 = 0, anda; = 3, = 1, Algorithm 2
reduces to MacQueen'’s method.
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a pointy in D is sampled according to a uniform distributi&hthis is done by
uniformly sampling each coordinate; all computer systemseha built-in uniform
random sampling method. If the sampled pgirig not in Q, it is rejected and one
samples again. If the sampled point is a scalarp is sampled uniformly in the
interval[0,1]. If @ < p(y)/pmax then the sample point is accepted; otherwise, it is
rejected!®

In Step 3 of Algorithm 2, the averagg of the sampled points i is given by

Ui 2wy
| #VV| ’

where #\{ denotes the number of elementsih Since the points iW are ran-
domly selected points in the Voronoi region correspondang t one may viewy;

as a probabilistic approximation to the centroid (or caxieted centroid) o¥; the
larger isq, the better the centroid approximatioftdNote thatj; keeps track of the
number of times that; has been previously updated. Some over-relaxation updat-
ing methods can be defined by appropriately choosmngas, 81, 32}; see (Ju et al,
2002a).

Algorithm 2 is much easier to implement and code than Alganitl. For Algo-
rithm 1, one has to explicitly construct Voronoi tessetias and determine centers
of mass of Voronoi regions. These steps are doable in tweaional settings such
as planar regions and regions on the sphere and in threaisiomal volumes, but
involve considerable coding. On general surfaces in thieeensions, algorithms
for Voronoi tessellations are not generally available an@gions in four and higher
dimensions, the calculation of centers of mass become ttipah On the other
hand, to find the generators of a CVT, Algorithm 2 does notireghe construction
of Voronoi tessellations or of centers of mass; both are@pprated via sampling.
Thus Algorithm 2 can be applied to regions and hypersurfacasbitrary dimen-
sions.

The accuracy of Algorithm 1 is limited only by machine prémis although,
in practice, one would not want to iterate to that level ofuaacy. On the other
hand, for Algorithm 2, accuracy is limited by the samplingoes made in Step 2.
The q sampled points are divided among the generators so thatinsayuniform
density setting, each generator would only be assignechipagn points, wheren
denotes the number of generators. Thus, if, say, Monte Garfling is used, the
errors in the probabilistic approximations of the centsoid the Voronoi regions
would be proportional tq/n/q so that this is the best accuracy one can expect from
Algorithm 2. Note that, for fixed, the accuracy degrades as we increase the number

13 |nstead of random, i.e., Monte Carlo, sampling, one cangifjunction with the rejection steps,
use quasi-Monte Carlo, Latin hypercube, etc. sampling atsti{McKay and Beckman, 1979;
Niederreiter, 1992; Saltelli et al, 2004) appropriate fppércubes.

14 Note that both rejection tests can be incorporated into glesirest because an alternate means
for rejecting points that are outside @fis to simply sefp(x) = 0 outside ofQ.

15f g, = By =0, anda, = B, = 1, we have in (5) that; — u;, i.e., the new generators are prob-
abilistic approximations of the centroid of the Voronoii@ts; this justifies saying that Algorithm

2 is a probabilistic generalized Lloyd's method.
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of generators and that, for fixedh, greater accuracy can be achieved by increasing
the number of sample pointg Also, note that it is useless to set a tolerance in
whatever stopping criterion is used in Step 4 of Algorithmo2be smaller than
O(y/n/aq).

Because accuracy control is better served by Algorithmi,usually the algo-
rithm of choice for regions in the plane and on the sphere anthfee-dimensional
regions. For other cases, e.g., higher-dimensional regioidl general surfaces in
three dimensions, Algorithm 2 becomes more practical.

We close this section on algorithms for CVT construction bying that several
other schemes for computing CVTs such as Newton-type afgosiand multi-level
methods are studied in (Du and Emelianenko, 2006, 2008;tlal; 2009).

3.3 The relation between the density function and the locaésh
size

An interesting problem about the asymptotic behavior C\&Tthe distribution of
the energy#” defined in (3). It was shown in (Du et al, 1999), that in the one-
dimensional case, for the CVT ofgeneratorg(x;,Vi)}{.; with a smooth density
functionp, we have

Him ot~ T viciscn, ©
whereh; denotes the diameter ®f, 7 = [, p(x)||x — xi||2 dx, and#" = S| A,
i.e., under some assumptions on the density function, amyioglly speaking, the
energy is equally distributed in the Voronoi intervals ahd tliameter of Voronoi
intervals are inversely proportional to the one-third poafehe underlying density.
Based on (6) and the fagt! ; hi = length of Q, we then obtain an approximation
of total clustering energy of the CVT in one dimension givgnfbr n large,

, 3
_ 1 (Uap*Pdx)
%NTZT.

Let d denote the space dimension and det= d — 1 if Q is a hypersurface
andd’ = d otherwise. For higher dimensions, a similar conjectureual@/Ts or
CCVTs can be stated as follows:

H

A epOahf Pa T vigi<n, (7)

& o (d'+2)/d’
A~ / p? /(2] dx ; (8)
24\ Jo
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wherecy, ¢, are constants depending only dh This conjecture still remains open
for d > 2 although its validity has been supported through many mizalestudies
and widely used for applications in vector quantizationsr&ao and Gray, 1992)
and image processing.

A direct consequence of (7) is

hi p(xj)\1/(d+2)
hj (p(x:)) ' ©)

The relation (9) between the density function and the locadimsizes is also very
useful in CVT-based adaptive mesh generation and optimoiz&iu, 2007; Ju et al,
2002b).

4 Application to climate and global modeling

4.1 Global SCVT meshes

We define quantitative measures of grid quality that we cartasssess the quality
of meshing schemes on the sphere.
Given a Voronoi mesk(x;, Vi) }!' 1, setQ = {(i, j) | xi andx; are neighborsand
let
hmin="min_||xi — x| and  hmax= max [|xi — Xj]|.
(i,))eQ (i,)eQ
Clearly, the ratio (Du et al, 2003b)

= P (10)

B hmin

is a natural measurement of thbal uniformityof the Voronoi mesHx;,Vi}i ;.
Itis clear thatu > 1 and the smaller igt, the more globally uniform is the Voronoi
mesh.

Letting x; denote the set of neighbor generatorsxgfa measure of théocal
quality or local uniformityof the Voronoi mesh a; is given by

| = .
maXjey; [[Xi — Xj|

Clearly 0< g; < 1 and the larger ig, the better the local uniformity.

We apply the commonly usegkmeasure (Field, 2000) to evaluate the quality
of dual Delaunay triangular meshes, where, for any triafigle; is defined to be
twice the ratio of the radiuBy, of the largest inscribed circle and the raditgsof
the smallest circumscribed circle, i.e.,
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Ry (b+c—a)(c+a-b)(a+b-c)
i —2?— abc ) (11)

wherea, b, andc denote the side lengths @f. Clearly, 0< g < 1 andg =1
corresponds to the equilateral triangle.
We then define the mesh quality measures

. My . 1 M
Omin=_ MIN 0O Oavg = — [¢]] in=min f = 1
min i i a9 = i; i, Omin Ll G, Yavg Mo i;q.,
wheremp denotes the number of dual Delaunay triangles. The clossetimeasures
are to unity, the better the mesh.

4.1.1 Uniform SCVT meshes vs. icosahedral-bisection meshe

Icosahedral-bisection meshes on the sphere have beerywisked in the climate
and global modeling communities; icosahedral-bisecti@simes from a family of
hierarchical meshes with 204‘~1 + 2 nodes at leved, in which there are 12 pen-
tagons and all others cells are hexagons. The level and/ = 2 meshes having 12
and 42 nodes, respectively, are SCVT meshes with respelee tortiform density,
but all other members of the family with levdls- 2 are not SCVTs, although they
are quite uniform. We use the centroids of the Voronoi ceflsach icosahedral-
bisection mesh as the initial guess and apply Lloyd’s methitiia uniform density
to generate a sequence of SCVT meshes; see Figure 7. Thiy quadisures of Sec-
tion 4 for the icosahedral-bisection and uniform SCVT mesi@ given in Table
1. The SCVT meshes do better with respect to the local meslityguzeasures,
i.e., with respect to local mesh uniformity, although they gorse with respect to
global mesh uniformity due to the shrinking relative sizehe pentagonal cells as
the mesh size decreases.

4.1.2 Locally refined SCVT meshes

Let a pointx on the sphere be represented by its spherical coordinatéat,lon)
with —17/2 < lat < 17/2 and 0< lon < 271. Setx. = (71/6,37/2) and define

ds(x.xe) = |/ (lat — 11/6)2 + (lon — 371/2)2.
Define the subregion of the sphere
St = {x = (lat,lon) | ds(x,xc) < 17/6}.

In the subregion, we want a high-quality mesh having a locsgmsize that igs
times smaller than that outside the subregion. We also wam@oth transition
between the coarse and fine grid regions.
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Fig. 7 From top to bottom: spherical centroidal Voronoi tesseile (left column) with 42, 162,
642, 2562 generators for a uniform density and the corrapgrspherical Delaunay triangula-
tions (right column).
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[Level /]# of generatofdesh type§ 1 | Gavg | Omin | Gavg | Omin |

2 42 I-B 1.13080.91740.88430.98740.9829
SCVT [|1.13080.91740.88430.987740.9829
3 162 I-B 1.17770.91110.858¢0.99040.9729
SCVT [|1.164710.91740.88430.98740.9829
4 642 I-B 1.19070.87370.84840.98650.9701
SCVT [|1.15940.91270.85240.99230.970]
5 2562 I-B 1.19400.88030.84050.986¢0.9694
SCVT [|1.23350.91470.85110.99310.9694
6 10242 I-B 1.19480.88790.838¢0.986¢0.9691
SCVT [[1.27100.91540.85040.99340.9691
7 40962 I-B 1.19510.89320.838(0.98660.9694
SCVT [|1.31040.91680.85040.99350.9691
8 163842 I-B 1.19510.89660.83790.987(Q0.9694
SCVT [|1.35260.91730.84940.99570.9687
9 655362 I-B 1.19520.897(00.837§0.99540.9691
SCVT [|1.408(00.91670.84650.99870.9675

Table 1 Comparisons of quality of icosahedral-bisection (I-B) amiform spherical centroidal
Voronoi tessellation (SCVT) meshes.

Using the density-mesh size relation (9), the density fionds set to

ye if ds(X,Xc) < 11/6
p(X) =< (1-s)ys+s)*  if 7/6<ds(X,Xc) < TT/6+ & (12)
1 otherwise,
wheregs denotes the width of the transition layer ajd= dso(’xgiz’"/ﬁ; we setys =3

andes = 11/12 here. The resulting SCVT with 2562 generators produceddyd’s
method and the corresponding dual Delaunay triangulatiepeesented in Figure
8 (top row). Variations in the Voronoi cell sizes and areas @otted in Figure 8
(bottom row). The histogram of the size distribution clganidicates that there are
two dominant mesh sizes; cells 1 through 1250 have one si#le, 1500 through
2500 have another size, and these two cells sizes differ hgtarfof three as pre-
dicted by (9). For this example, we hape= 5.4018,0ayg= 0.8712,0min = 0.4533,
Oavg = 0.9854, andjmin = 0.6886.

Figure 8 as well as Figure 9 below illustrate an importantuieaof nonuni-
form CVT and SCVT grids, namely smooth transitions from seato fine grids.
This can always be effected within the CVT/SCVT framewornotigh the use of
smooth density functions so that, if a given density funtigonot smooth, it is often
beneficial to smooth it before using it to generate CVT/SCWidlg see Section 4.2.

4.1.3 Nested SCVT meshes

For this example, the region of interest covers most of NArtferica, i.e.,
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Fig. 8 Top row: a spherical centroidal Voronoi tessellation fleftd its dual spherical Delaunay

triangulation (right) with 2562 generators and the denglg); bottom row: plot of Voronoi cell
sizes (left) and areas (right).

Sv={x=(lat,lon)| —5° <lat <60°, 225 <lat <310}.

Again, we want a high-quality mesh with local mesh siz&jnbeing approximately
¥s = 3 times smaller that that in outside that region. This timeuse a different
means to generate a locally refined SCVT mesh because we avislake use of
global uniform SCVT meshes.

We begin with the global uniform SCVT with 2562 nodes showSéttion 4.1.1.
The submesh falling insid®,, has about 355 nodes. We refine this submesh to get a
new mesh of5,, with 3574 nodes (about 10 times more nodes). We then merge the
refined submesh with the remaining generators of the ofigimfarm SCVT outside
of Sy and produce a new global nonuniform Voronoi mesh with 5781egators;
the result is clearly not a SCVT but we use it as an initial gfesLloyd’s method.

We choose a Similar to (12), we choose the density function

ys“ if xeSy
p(X) =19 (1-s)ys+s)*  if0<d(x,Sy) <& (13)
1 otherwise,
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wheres, = d(xé—fm) and the width of the transition layet = 0.24. Then, we apply
Lloyd’s method with this density, adding one more restoictiall generatorg; are
fixed during the iterations ifl(x;, Sy) > &s.

The resulting SCVT with 5781 generators and its dual Delgidriangulation
are presented in Figure 9 (top row). Variations of Vorondi sizes and areas are
plotted in the bottom row. For this example, we have= 5.7079,0ayg = 0.9006,

Umin - 04012,qa\/g - 09904 an(nmin — 07114
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Fig. 9 Top row: a spherical centroidal Voronoi tessellation Jlefith 5781 generators and its

dual spherical Delaunay triangulation (right) producedHts/ nested method; bottom row: plot of
Voronoi cell sizes (left) and areas (right).

4.2 CVT-based regional meshes of the North Atlantic Ocean

Figure 10 (top left) shows the time-mean kinetic energy fliglobal 0.1 degree
simulation of the North Atlantic Ocean (Smith et al, 2000k Wsée this data set to
determine both the boundary of the North Atlantic ocean anajgoropriate density
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function, and then construct the CVT mesh based on thisrimdition; see (Ringler
et al, 2008) for details®
Based on the kinetic energyE, we defined the density function

KE 14

P = max {O.l, KEmax] ,
whereKEmax is the maximum kinetic energy in the domain. The lower bourid 0
insures that the grid in quiescent regions is not overly smawe also raise the
value of the density function as we approach the boundaryeobtean so that the
boundary is resolved to a desired resolution; this is acdisimgd by making the
density in regions near a land boundary also depend in ams@vweanner on the
distance to the boundary. The resulting mesh has a grid repaleat varies by a
factor of 10.

In order to allow for a smooth transition between regionsightand low reso-
lution, we apply a substantial amount, e.g., approxima2élpasses, of Laplacian
smoothing’ to our density function. Figure 10 shows some of the resyl@vT
meshes. Whereas the two examples given above produce a ritle$ivovdominant
resolutions, in this example a wide spectrum of resolutamagpresent. Note that this
type of mesh will lead to additional complications relatecpirameter settings of
sub-grid closures but that is also offers the opportunigdaptively select multiple
closure models whose efficacy depends on the local grid Alki all, variational
resolution meshes such as the one illustrated in Figure dGignificantly more
ambitious than those considered in Sections 4.1.2 and.4.1.3

4.3 Numerical simulations with SCVT meshes

4.3.1 Mesh decomposition for parallel computing

We take a global SCVT mesh with 40962 generators (about 12@&koiution) and
separate it into 642 blocks; see Figure 11. These blocksraeted so as to bal-
ance the work-per-block and to minimize the amount of infation that must be
communicated between blocks; the software package “ME{Katypis and Ku-
mar, 1998) in which a family of multilevel partitioning algthms is implemented
is used for this purpose. We can assign an arbitrary numbgooks per processor
so that two types of parallelism within are supported witthiis framework, i.e.,
distributed memory across nodes and shared memory withide.n

16 |n practice, we would not use such a proxy to determine a biarieesolution CVT grid, but
instead would adaptively determine the grid from the simoitremodel output.

17 In the current context, Laplacian smoothing is a processnafishing the a function defined on
a grid. One replaces the value of a function at a point by firstaging its value at neighboring
points and then averaging that result with its own value @fpibint.
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Fig. 10 Top-left: time-mean kinetic energy of the North Atlantic &aa; top-right: a CVT mesh
with 47305 generators of the North Atlantic; bottom-leftz@om-in of the CVT mesh; bottom-
right: a zoom-in of the same region of a CVT mesh with 1839Q7egators.

4.3.2 Example numerical methods

As discussed in Section 1, all typical finite-volume gridggferings used for quadri-
lateral meshes, i.e., A-, B-, C- and Z-grid staggeringsehasen successfully ap-
plied to Voronoi tessellations. C-grid staggering has shpwmising results, par-
ticularly when applied to variable resolution meshes. Skeck: Ringler Dyncore
Chapter for a broad discussion of C-grid staggerings and®agourn et al, 2009;
Ringler et al, 2010) for an in-depth discussion of C-gridygeering applied to the
nonlinear shallow-water equations.

We apply the methods developed in (Thuburn et al, 2009; Rirgglal, 2010) to
test case 5 of the standard shallow-water test cases dedeloWilliamson et al,
2001). A flow in geostrophic balance is confronted with a éasgale orographic
feature at the start of the simulatidns= 0. The transient forcing dt= 0 leads to
the generation of large-amplitude gravity waves and Rosstwes. The sole forcing
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Fig. 11 Decomposition of a global SCVT mesh of 40962 generators6dbblocks. The blocks
can be distributed across computational nodes for implémtien on high-performance architec-
tures.

mechanism is the presence of the orographic forcing. Wioilenalytical solution is
known, results from high-resolution global spectral msdkipscomb and Ringler,
2005) are adequate reference solutions for the simulationducted here.

Figure 12 shows the potential vorticity and kinetic energglay 50 when using
a SCVT with 40962 cells based on a uniform density functidral®w-water test
case 5 is shown to breakdown into 2D turbulence after day@bigire 12 shows a
snapshot of this turbulent behavior. Even in the presenédlgfdeveloped 2D tur-
bulence, the simulation is stable and robust while conegrigtal energy to within
time truncation error. Simulations of this same test caseubing the variable res-
olution meshes shown in Figures 8 and 9, produce equallystabaults.

Fig. 12 Simulation results at day 50 using a uniform SCVT mesh with ittethod outlined in
(Ringler et al, 2010). The figure depicts the potential wattifield (left) and the kinetic energy
field (right). The simulation conserves potential vorgidio machine precision and total energy to
within time-truncation error.
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5 Summary

Voronoi tessellations and, in particular, centroidal \fawotessellations, offer a ro-
bust approach to tiling the surface of the sphere. The Daladrangulation is
the dual of the Voronoi tessellations, so whether hexagorisangles are of in-
terest, this approach will result in high-quality uniformdanonuniform meshes.
Centroidal Voronoi tessellations are particularly welltsd for the generation of
smoothly varying meshes, thus providing a possible alterm#o traditional nest-
ing approaches. With the recent discovery of a class of fimtame methods that
are directly applicable to variable resolution meshes§fthn et al, 2009; Ringler
etal, 2010)), it appears that the creation of variable reg&ni, global climate system
models is now possible.
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